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On the overlap dynamics of multi-state neural networks with a 
finite number of patterns 

D BoIEt, P Dupontz and B Vinck 
lnstituut voor Theoretische Fysica, Katholieke Universiteit Leuven, 8-3001 Leuven, 
Belgium 

Received 9 December 1991 

Abstract. Neural networks with multi-state neurons are studied in the case of low loading. 
Far symmetric couplings satisfying a certain positivity condition, a Lyapunov function is 
shown to exist in the space of overlaps between the instantaneous microscopic state of the 
system and the learned patterns. Furthermore, an algorithm is derived for zero temperature 
to determine all the fixed points. As an illustration, the three-state model is worked out 
explicitly for Hebbian couplings. For finite temperature the time evolution of the overlap 
is studied for couplings which need not be symmetric. The stability properties are discussed 
in detail for the three-state model. For asymmetric couplings limit-cycle behaviour is shown 
to he vassible. 

1. Introduction 

Neural networks with multi-state neurons have recently received a lot of attention 
[l-161. Thereby the ability to store and retrieve so-called grey-toned pattems has been 
investigated. One of the models that has been discussed in [4-8,11, 121 is based upon 
the Q-king spin glass. For this model, the capacity-temperature phase diagram bas 
been determined using the pseudo-inverse rule [7]. Furthermore, an analysis of the 
space of couplings has led to the distribution of the local fields, the critical storage 
capacity and the minimal number of errors in the case of overloading [ 11,121. Finally, 
conceming the dynamics, for three-state (-1, 0 , l )  neurons a numerical analysis from 
the point of view of information processing has been given for the fully connected 
version at zero temperature [4] and analytic results have been presented for the 
non-symmetric highly dilute version of this model [5]. 

In this paper, we consider the fully connected Q-king spin glass neural network 
with self-coupling at zero and finite temperature, in the case of low loading (i.e. for a 
finite number of patterns). In particular, for symmetric couplings satisfying a certain 
positivity condition, a Lyapunov function is derived for the dynamics in the space of 
overlaps between the instantaneous microscopic state of the system and the learned 
patterns. At zero temperature this leads to an algorithm to determine all the fixed 
points. For finite temperature the dynamical evolution of the overlap is studied for 
couplings which need not be symmetric. Retrieval states, symmetric and asymmetric 
states and limit-cycle behaviour are discussed. The results are worked out explicitly 
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for the three-state model with a small number of patterns. They are compared with 
the findings of a similar analysis made for the Hopfield model [17-221 and for the 
Potts model [9,  20, 211. 

The rest of the paper is organized as follows. In section 2 we describe the model 
and derive in mean field approximation the free energy and fixed-point equations for 
the overlap parameters. In section 3 we study the system at zero temperature for 
symmetric couplings satisfying a certain positivity condition. Here the approach of 
Procesi and Tiroui [18] is generalized: we prove that the free energy is a Lyapunov 
function and formulate an algorithm to find all the fixed points of the dynamics. As 
an example, we discuss the Q = 3 model with p = 2 patterns for Hebbian couplings. 
Besides the retrieval states, the existence of symmetric and asymmetric states is studied 
as a function of b, an extra parameter introduced to control the relative importance 
of the neuron states which are low in absolute value. Section 4 deals with the system 

neuron dynamics is now stochastic, the overlap dynamics is deterministic. This leads 
to the derivation of flow equations for the overlap. Again, the Q = 3 model with p = 2 
patterns is studied in detail. Limit-cycle behaviour is shown to be possible for asym- 
metric couplings. Finally, in section 5 the conclusions are presented. 

ai aimixy :eiiipeiatiiie foi c0up:iiigs which iieed iio: be syme:ik. Akhough the 

2. The model 

Consider a fully connected network with N neurons which can take values in a set 
< sq = f l }  where the elements have mean 0. A state of the 

system will be denoted by U = (u(l), . . . , u ( N ) ) .  We want to store p patterns {#, 
i = 1 , .  . . , N, p = 1 , .  . . , p, where cf are independent random variables with the same 
uniform distribution as the neurons. We study the following Hamiltonian: 

= {-1= s, < s2 <. . 

N N 
H ( b ) = - l  1 J v u ( i ) u ( j ) + b  1 u(i)2. 

i j = 1  i = l  

The synaptic couplings J, are given by 

where A is an invertible symmetric p x p  matrix and where C =Ut2)) with (( .)) denoting 
the average over the distribution of the patterns. For A = 1, equation (2) reduces to 
the Hebb rule. Note that we do allow self-coupling. The parameter b >  0 is introduced 
as an additional degree of freedom in order to control the relative importance of states 
which are low in absolute value. The local field h, in neuron i is defined as 

(3) 

Using standard techniques [17] the free energy at temperature T is calculated in 
the limit N + m as 
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with (= (t',. . . , $). The variables m = ( m ' ,  . . . , m P )  are introduced through the 
saddle-point method. They satisfy the following fixed-point equation: 

3. Zero temperature dynamics 

In this section the results of [I81 are generalized to the multi-state model discussed in 
section 2 with A strictly positive. 

Suppose the state of the network at time f is U. The state of neuron i after the next 
time step, i.e. at I + At, is 

udi) = g ( h , ( u ) )  ( 6 )  

where g is the input-output function: 

s, = -1 i fx<b(s ,+s , )  

SQ = +1 
g(x)= sk if b ( s k - ,  + s k ) s x  c b(sk+sk+ , )  k=2, ...,Q- l (7) 

if b(sQ-,+so)  s x. 

1 N  

NC ,-, 

I 
We define the overlap between the instantaneous microscopic state of the system, U, 
and pattern {cy},  i = 1 , .  . . , N, as 

L trdi) .  (8) =- 

The neuron dynamics induces in a natural way a dynamics in the space of overlaps: 
. N  

with .& = (sf,. . . , tp). Using the fact that hi( u) = 6; .  Am, we get by the law of large 
numbers 

1 
u m  =$Sg(&.Am))). (10) 

m =$Ssmax(6. Am))) (11) 

In addition, the limit T+O of the fixed-point equation ( 5 )  reads 

1 

where 

s,.,(~. Am) = max (6. A m  - bs2). 
,EX 

It is easy to show that 

s, . ,(S.Am)=g(S.Am). (13) 

Hence the variables m, appearing in (4) and ( 5 )  can be interpreted as the overlap with 
the pattems. This means that the overlap (8) is the correct order parameter describing 
the correlations between the state of the system and the patterns. We must be aware 
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that (8) attains values up to mmax = ((Itl)), which exceeds one if Q > 3, and that it does 
not measure the quality of retrieval. A better quantity to measure the retrieval quality 
of a network is the Hamming distance between the instantaneous microscopic state 
and the patterns: 

1 N  

4N j = l  
d'=- 1 ( g ( i ) - f y ) 2 .  (14) 

Here we observe that in a fixed point, where u( i )  = g ( & .  Am), we obtain 

So in the following we concentrate on the overlap m. 

function for the overlap dynamics 

d ' = ~ ( ( g ( & . A m ) - f ' ) 2 ) ) .  ( 1 5 )  

Next we show that the zero temperature limit of the free energy (4) is a Lyapunov 

E(m)=l imF(T,m)  (16) 

(17) 

Consider a vector 5 ~ 2 ~ ~ .  Because there are exactly Q" vectors & we can label the 
components of c by the &s. We then define 

G, = { m E R P / g ( & .  Am) = &}. 

T-0 

C 
2 

= -m .Am -((e. Am g(&.  Am)))+ b((g2(&. Am))). 

(18) 

If m E G, and m'E G, then Um = Um'. Furthermore, if m E G, and Um E G, then 

Define now for each 6 the following function on the space of overlaps: 

This gives a partition of the space of overlaps in disjoint convex regions. 

Um is a fixed point. 

(19) 
C 
2 

Q,(u)=-u.Au-CU.AU~+~((S:)) 

with ug = Um for an arbitrary m E G,. It is clear that on G,, Q,( .) and E( .) agree. 
Moreover, O r ( . )  has its absolute minimum in U, because Q s ( u ) - Q s ( u s ) =  
( C / 2 ) ( u - u g )  *A(u-u,). Comparing Q,(u,) and E ( q )  we get 

where &+ is such that U,E G,+. Using this and the definition of g (  .) it follows that the 
contribution of each term in the average (20) is non-negative. This proves that for a 
given m E G, and ug = Um 

Q r ( u a ) - E ( u g ) = ( ( ( ~ ; - 5 6 ) ( & .  Au,-b(5;+6e)))) (20) 

E ( m ) * Q g ( v g )  E ( u 6 )  (21) 
which means that E(  .) is indeed a Lyapunov function for the overlap dynamics (9). 
Note that equality is obtained if and only if U, E Gg which implies that U, is fixed. 

We can now formulate an algorithm which visualizes the dynamics: 
( 1 )  Choose an initial overlap m in some region G, characterized by a vector CE 2'' 

such that & = g(&.  Am)  
Compute Um=u,=(l/C)((&)). 
If uge G, 
then U, is a fixed point (the only one in Gg!) 
else 

There is no fixed point in G,. 
E ( u , ) < E ( m ) .  
Repeat (1). 
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Thus we can conclude that a region G, contains a fixed point if and only if 

V t ~ z ' :  g ( k . A 5 ' C e ) ) )  C =Cc (22) 

This result provides us with a method for finding (in principle) all the fixed points of 
the dynamics: all 5 that satisfy (22) define a region that contains a fixed point, namely 

ug = $m). (23) 

Although there is a restriction on the 5 to he tested (& = &), in practice the algorithm 
is only useful for small p since the number of possible 5 is of the order Q(Q"2'. 

As an illustration we explicitly analyse the structure of the fixed points in the Q = 3 

1 

;.;.=de! with A = I. !E :ha: case the ddk-po i i i i  q i i ~ i i ~ i i  ( 5 )  caii be wiiiiefi 

(24) 
1 m * = -  3 p - , I ; g ( m * + i . % )  

f 

with [ = ( c l , .  . ., ["-', [*",. . . , 6') and &= (m',  .. . , d-' ,  m'+' , . . . , m'). Since 
g( .) now takes values in {-1,0, +l},  we observe that every component has to be a 
iiiiiitipie of i / T ' .  iu'oie ihai for the Q = j case the overiap saiisiies jmsi s i .  Ordering 
the components of the overlap from high to low reduces the number of cases to be 
examined to (3'-1+1)!/(3p-'-p+l)!. This is much less than the number of cases in 
general, i.e. 3(3p-'"2. 

For p = 2, we then only have to consider the first octant of the (m' ,  m') plane, 
leading to the following results: 

Because of (24) all fixed points satisfy m'+m2=Z: .  
The state m = (0,O) is always a fixed point. 
For O <  b < f  there exists one retrieval state (l,O), one symmetric state (f, f )  and 

For fs b <$ there exists one retrieval state (1,0),  two symmetric states (f ,  f) and 

For 
For 15 b there is no other fixed point but (0,O). 

one asymmetric state ( I , + ) .  

(3,;) and one asymmetric state (3.f). 
b < 1 there is one retrieval state (1,O). 

It is worth noting that the retrieval state appearing for 0 < b < 1 is ground state only 
ford < b st, as can be verified by explicitly computing the free energy (4). For general 
Q > 3 retrieval states only appear in a restricted region for b, namely 

4. Finite temperature dynamics 

4.1. Theflow equations 

In order to find out how an arbitrary initial state of the system characterized by its 
overlap m changes in time, we derive the flow equations for the overlap using techniques 
similar to the two-state case [22,23]. In contrast to the Potts model [20] we do not 
need to introduce sublattices. 
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We start from the symmetric learning rule (2). Suppose that the state of the network 
at time f is U with u(i)  = sI from some I €  { l , .  . . , Q}. The probability that, at f +df,  
the ith neuron changes its state to F:sl = s ( ( ~ + ~ ) ~ ~ ~ ~ ) + ,  is taken to be 

(26) 
1 w,(s,+Ffq)=-exp - (h i (u)F:Si -b(F:s l )2)  

Zi= E exp - ( h i ( u ) s k - b s i )  . 

Z, ’ [:. 
k = l  [’ T I 

These transitions satisfy detailed balance. At this point it is important to remark that 
the limit T+O of the dynamics described by these equations (26) (denoted in the 
following by T=O+) is defined for continuous time, while the deterministic zero 
temperature dynamics given by (6) is defined for discrete time. Consequently, the 
solutions of the respective dynamical equations are not necessarily the same as we will 
see explicitly in section 4.2. 

We then consider the probability p ( u ,  f )  of observing the network in a state U at 
time f. The following master equation is valid: 

N Q  
~- Jp(u’f)-  E E { w < ( F L k u ( i ) + u ( i ) ) p ( F y k u ,  f ) - q ( u ( i ) + F f u ( i ) ) p ( u ,  f)}.  (27) J f  i = i  k - 1  

Defining the probability of finding the system at time f in a state with overlap m by 

p ( m ,  f ) = E p ( u ,  f ) s ( m - m ( u ) )  
(r 

the master equation (27) transforms into 

1 
m - m ( u ) + - e , A : ( u )  NC - S ( m - m ( u ) ) ]  

with 

A f ( u ) = v ( i ) - F f u ( i )  

where we have used that 

1 
NC 

m ( u ) - m ( F : u )  = - & A f ( u ) .  

Defining the average at time f of a test function @( .) as 

6, = dm P(m,  t ) @ ( m )  I 
we then arrive at 



Dynamics of multi-state networks 2865 

Expanding the function Q in powers of I/ N, doing a partial integration and comparing 
with (33), we get 

where (.) denotes a thermal average, i.e 

Taking as initial probability distribution 

P (m,  0 )  = 8 ( m  - m,) 

the solution of (35) at time t reads 

P(m, t) = 8 ( m  - m ( t ) )  

where the flow m ( t )  satisfies 

(37) 

(38) 

with initial condition m(O)=m,.  So, comparing ( 5 )  and (39) we conclude that 
thermodynamical and dynamical stability are equivalent for invertible symmetric A, 
Furthermore, if,A is strictly positive it follows that the free energy (4) is a Lyapunov 
function: 

In order to  study the stability properties of the state m one has to look at the eigenvalues 
of the matrix 

1 
W m )  = CS,., -+(C’M) ”((s*)+)~))) (41) 

where (s’) and (s) are given by (36). 

4.2. Stability properties for Q=3 and p = 2  

We use the flow equations (39) for the overlap to illustrate the complex behaviour of 
a multi-state model. We restrict ourselves to the most simple case: the Q = 3  model 
with p = 2  patterns and with synaptic matrix A taken to be the unit matrix. In this 
discussion it is useful to define the following function: 

1 + y cosh(x/ T) 
y =+ exp( b/  T). 

g(x)=3T[y+cosh(x/T)]2 

We recall that it is sufficient to discuss the situation in the first octant since interchanging 
components or changing the sign of one of the components has no influence on the 
existence and nature of the fixed points. 
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4.2.1. The zero solurion. The zero solution m=(O,O) is always a fixed point. The 
stability of this point is determined by the eigenvalue A of the stability matrix (41): 

A=-1+3g(O). (43) 

As we can see in figure 1 this splits the (b, T )  plane in two regions separated by a line 
To: the zero state is stable in region I and unstable in region 11. We observe that for 
b>0.4631 the zero solution is stable at any temperature. 

4.2.2. Rerrieoal slates. The solutions of the fixed-point equation ( 5 )  of the form (m,  0) 
are given by 

sinh( m /  T )  
y + cosh(m/ T ) '  

m =  

Studying tbe eigenvalues A,  and A 2  of the corresponding stability matrix, 

A I  = -1+3g(m) A , =  Al+g(0)-g(m) (45) 

we arrive at the situation depicted in figure 2. 
At T = O+ we find the stable retrieval state m = 1 already mentioned in section 3. 

Furthermore, a repelling state m = b occurs. Depending on b the behaviour of these 
states for increasing temperature is different. 

For O <  b <0.4621 the repelling respectively the retrieval state goes continuously 
to the zero state at To respectively T,. In the region enclosed by Tk the retrieval state 
becomes unstable due to the existence of a stable asymmetric state. 

In the region 0.4621<b<0.4631 there is re-entrant behaviour (see figure 5 ) :  
the repelling state first goes continuously to the zero state which becomes unstable 
at the lower part of To. Then it continuously reappears at the higher part of To 
where the zero state regains its stability. Finally it disappears discontinuously together 
with the retrieval state at T , .  

For 0.4631 < b < 1 both states coalesce at T,,, where they disappear, which is again 
reminiscent of a first order phase transition. 

For b 1 no solutions of the form (m, 0), m f 0 exist. 

b 

Figure 1. The temperature To as a function of the parameter b for the Q = 3, p = 2 network. 
Region I: stable zero state; Region 11: unstable zero state. 



Dynamics of multi-state networks 2867 

.7 I I- 

b 
Figure 2. The temperatures T'; (dashed line), To and TM as a funnion of the parameter 
b forthe Q=3,p=Znetwork. ForO<b<0.4621. To= T,. Withintheregionenclosed by 
the dashed curve T$ no stable retrieval state is possible. 

4.23. The symmetric slates. The solutions of the fixed-point equation ( 5 )  of the form 
(m, m )  are determined from 

Studying the eigenvalues of the stability matrix, 

A ,  = - l+g(m)+2g(2m) h2 = -1 + g ( m )  +2g(O) (47) 

we find the situation shown in figure 3. 
At T = O+ there exist, depending on b, stable symmetric states as discussed in section 

3. Moreover, for 0 < b < 3 a symmetric saddle-point occurs at m = b/2 and for f < b <; 
a repelling symmetric point occurs at m = b. Depending on b and with increasing 
temperature the following behaviour is observed. 

.7 

- 

.5 - 

.4 - 

.3 - 

- 
- 

c - 
- 
- 

.O .I  .2 .3 .4 .5 .€I .7 
b 

Figure 3. The temperatures T: (dashcd line), To and T. as a function of the parameter b 
forthe Q=3,p=Znetwork. ForO<b<O.4621, To=T,.  
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For O <  b < f  the lowest symmetric state goes continuously to the zero solution at 
T = To. The highest symmetric state is stable from T = 0 to T = T: . There it becomes 
a saddle-point going continuously to  the zero solution at T =  T, = TM, 

For f < b < f  there are (at low temperatures) four symmetric states. Because the 
very existence of four symmetric states does not influence the retrieval properties of 
the network we only remark that a t  some still rather low temperature two of them 
disappear together. 

In the region f<b<0.4621 the behaviour is then similar as for b <f, once two 
of the four symmetric solutions have disappeared. 
For 0.4621 < b <0.4631, however, there are again re-entrance phenomena (see 
figure 5). At the lower part of T:  the highest symmetric state turns into a 
saddle-point and at the lower part of To the lowest one continuously disappears 
in the zero solution making the latter unstable. At the higher part of To, however, 

regains its stability. Finally, at  T, the symmetric states coalesce and disappear. 
For 0.4631 < b <0.4667 only the re-entrance for T: remains. 
In the region 0.4667 < b <; the last two symmetric states coalesce at T, where 
they disappear. However, for 0.5024< bc0.5114 there is a re-entrance 
phenomenon. This is related t o  the fact that it is not always the same symmetric 
states that disappear first. 

!he !owest state reappears. A! the higher pa!? af T: !he highest symmetfic s!l!e 

For b > f there are no symmetric states. 

4.2.4. The asymmetric states. In order to find the asymmetric states one has to solve 
the fixed-point equations (5) in general. The most important aspects of the behaviour 
of these asymmetric solutions are depicted in figure 4. 

Figure 4. The temperatures T:, (dashed line) and To, as a function < 
theQ=3,p=2netwark.  ForO<b<0.1547, T. ,=T; .  ForO<b< 

%er b for 
: T : .  

In the region O <  b < f  there exists at T=O+ a stable state ( 1 ,  f) ,  a repelling state 
(1 ,  b)  and a saddle-point ( f+$b, f - ib) .  With increasing T the saddle-point goes 
continuously to the highest symmetric state at T: and turns this state into a saddle-point. 
For O <  b<0.1547 the repelling state goes continuously to the retrieval state at T> 
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and turns the latter into a saddle-point. However, for 0.1547< b < f  the repelling and 
attracting states coalesce at T., where they disappear. 

In the region f <  b<f  the situation is more complicated. At T=O+ there is an 
attracting state ( f ,  f ) .  Furthermore, for f < b <$ there are at T = Ot four saddle-points 
( ( l + b ) / 2 ,  (1 -6)/2), (b,f) ,  (f, 6 )  and ( f + f b , f - f b ) ,  and one repelling point (26,b) .  
However, for $< b<f  only the first three saddle-points solve (5). 

In figure 4 we have indicated all information about the asymmetric states that is 
necessary to evaluate the retrieval qualities of the network: 

The attracting state mentioned above disappears together with one of the saddle- 
points at T.,. A complex re-entrance phenomenon can be observed for 0.4883 < 
b <0.5000. 
There exists an asymmetric saddle-point up to T:,. The leftmost part of Tzs 
coincides with T,". At this line the asymmetric saddle-point and the highest 

the region 0.4621 < b < 0.4667 a re-entrance phenomenon corresponding to the 
one for T," is observed (see figure 5 ) .  At the rightmost part of T:s the asymmetric 
saddle-point and the repelling solution to (44) coalesce turning the latter into a 
saddle-point. 

symme:ric s:a:e caa!esce :uming :he !a::e: in:a a sadd!e-p=int. CGnseqi;e::!!y, i:: 

c .ZS-( -'\ t 

Figure 5. Re-entrant behaviour for 0.4621 < b <0.4667. The lines To, TM, c, 7: and T ,  
are defined BE before. 

Finally, in the region f <  b < 1 only one asymmetric state exists, namely the one 
corresponding to (( 1 + b ) / 2 ,  (1  - b ) / 2 )  at T = 0'. It disappears continuously in the 
lowest retrieval state at T:,, turning the latter into a saddle-point. 

It would be interesting to see if the features presented above survive for extensive 
loading (I, which has, of course, to be studied with different methods. For the Hopfield 
model [I71 for example (where it should be remarked that no parameter b is present) 
one knows that for finite a the system behaves in the retrieval regime very much as if 
it were at a finite temperature proportional to Consequently the overlap will 
not be unity. However this overlap does not go continuously to zero with increasing 
temperature (i.e. a first-order transition occurs). Furthermore, for that model the 
spin-glass states appearing for finite (I can be considered as the collective remnant of 
the finite-p symmetric mixture states. 
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4.3. Limit-cycle behaviour 

Extending the learning rule (2) to asymmetric matrices A, the Hamiltonian formalism 
is no longer valid. However, one can easily show that the derivation of the dynamical 
equation (39) still goes through. In this case limit-cycle behaviour is possible. This 
phenomenon has already been observed for the Hopfield model [19] and the Potts 
model [20,21]. We restrict ourselves here to an explicit example: Q = 3, p = 2, b = 0.3 
and the matrix A given by A,, = A22 = 1, AI2 = -A2, = 0.25. 

At T = O+ there are four attracting and four repelling asymmetric points. The zero 
solution is stable. 

When the temperature increases (see figure 6 ( a )  with T=0.04) there exist four 
repelling asymmetric points and an attracting limit-cycle. The zero solution is stable. 

b 
1.0 1.0 

0.5 0.5 

"8 0.0 "8 0.0 

-0.5 -0.5 

-1.0 -1.0 

c 
1.0 

0.5 

"B 0.0 

-0.5 

Figure 6. me Row lines in the ( m ' ,  m * )  plane for 
the Q = 3, p = 2 network with asymmetric couplings. 
( a )  T=O.O4: ( b )  T = h ;  ( c )  T = i .  

-1.0 
l,o -1.0 -0.5 0.0 0.5 

m' 

A further increase of the temperature (see figure 6 ( b )  with T=&) results in the 
existence of one attracting and one repelling limit-cycle. The zero solution is stable. 

The repelling limit-cycle contracts to zero and the zero solution becomes unstable 
when raising the temperature still further. The attracting limit-cycle remains (see figure 
6 ( c )  with T=& 

Finally, the attracting limit-cycle contracts to zero at T = 0.1063 and the zero state 
becomes attracting. From here onwards this is the only remaining fixed point. 

It is interesting to note that limit-cycle behaviour was also observed for the Q = 3, 
p = 3 system with the same values for the parameters b and T. 

5. Concluding remarks 

In this paper we have studied the dynamics of Q-king spin-glass neural networks with 
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a finite number of patterns at arbitrary temperature. In particular the existence and 
stability properties of the retrieval states and the spurious symmetric and asymmetric 
states were discussed. In this way we have not only better understood the retrieval 
properties of these attractor neural networks but we also gained some insight into the 
non-trivial dynamics of Q-king spins. 

Allowing self-coupling between the neurons, we were able to show that for sym- 
metric couplings satisfying a certain positivity condition (i.e. A strictly positive), there 
exists a Lyapunov function for the dynamics in the space of overlap vectors. In the 
zero-temperature case this could be used to constru& an algorithm that allows, in 
principle, all the fixed points to be found. For practical reasons the number of neuron 
states and patterns should be small. Even in the simple example Q = 3, p = 2, A = 1 
there appeared, besides the retrieval states, symmetric and/or asymmetric states 
depending on the relative importance of the low (in absolute value) neuron states. 

couplings which need not be symmetric. We have then noticed that the thermodynamical 
and dynamical stability are equivalent for symmetric couplings. Studying the stability 
properties of the Q = 3, p = 2, A = 1 model in detail gave us already a good illustration 
of the complex behaviour of these types of network. The (retrieval) performance of 
the network is strongly dependent upon the temperature and the parameter b, measuring 
the importance of the low neuron states. In fact for 0.4631 < b < 1 the retrieval state 
is never the only attracting point of the dynamics. So the size of the basin of attraction 
is diminished by the existence of a repelling solution to the fixed-point equation for 
the overlap (cf ( 5 ) )  and by the existence of an asymmetric saddle-point for temperatures 
up to T". For O <  b<0.4631, however, situations do occur at sufficiently high tem- 
peratures where only the retrieval state is an attractor. Its basin of attraction is then, 
of course, maximal. We end with the remark that all states show re-entrant behaviour 
in the region 0.4621 < b <0.4631. 
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