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Abstract. Neural networks with multi-state neurons are studied in the case of low loading.
For symmetric couplings satisfying a certain positivity condition, a Lyapunov function is
shown to exist in the space of overlaps between the instantaneous microscopic state of the
system and the learned patterns. Furthermore, an algorithm is derived for zero temperature
to determine all the fixed points. As an illustration, the three-state model is worked out
explicitly for Hebbian couplings. For finite temperature the time evolution of the overlap
is studied for couplings which need not be symmetric. The stability properties are discussed
in detail for the three-state model. For asymmetric couplings limit-cycle behaviour is shown
to be possible.

1. Introduction

Neural networks with multi-state neurons have recently received a lot of attention
[1-16]. Thereby the ability to store and retrieve so-called grey-toned patterns has been
investigated. One of the models that has been discussed in [4-8, 11, 12] is based upon
the Q-Ising spin glass. For this model, the capacity-temperature phase diagram has
been determined using the pseudo-inverse rule [7]). Furthermore, an analysis of the
space of couplings has led to the distribution of the local fields, the critical storage
capacity and the minimal number of errors in the case of overloading {11, 12]. Finally,
concerning the dynamics, for three-state (—1, 0, 1) neurons a numerical analysis from
the point of view of information processing has been given for the fully connected
version at zero temperature [4] and analytic results have been presented for the
non-symmetric highly dilute version of this model [5].

In this paper, we consider the fully connected Q-Ising spin glass neural network
with self-coupling at zero and finite temperature, in the case of low loading (i.e. for a
finite number of patterns). In particular, for symmetric couplings satisfying a certain
positivity condition, a Lyapunov function is derived for the dynamics in the space of
overlaps between the instantaneous microscopic state of the system and the learned
patterns. At zero temperature this leads to an algorithm to determine all the fixed
points. For finite temperature the dynamical evolution of the overlap is studied for
couplings which need not be symmetric. Retrieval states, symmetric and asymmetric
states and limit-cycle behaviour are discussed. The results are worked out explicitly
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for the three-state model with a small number of patterns. They are compared with
the findings of a similar analysis made for the Hopfield model [17-22] and for the
Potts model [9, 20, 21].

The rest of the paper is organized as follows. In section 2 we describe the model
and derive in mean field approximation the free energy and fixed-point equations for
the overlap parameters. In section 3 we study the system at zero temperature for
symmetric couplings satisfying a certain positivity condition. Here the approach of
Procesi and Tirozzi [18] is generalized: we prove that the free energy is a Lyapunov
function and formulate an algorithm to find all the fixed points of the dynamics. As
an example, we discuss the Q =3 model with p =2 patterns for Hebbian couplings.
Besides the retrieval states, the existence of symmetric and asymmetric states is studied
as a function of b, an extra parameter introduced to control the relative importance
of the neuron states which are low in absolute value. Section 4 deals with the system
at arbitrary temperature for couplings which need not be symmetric. Although the
neuron dynamics is now stochastic, the overlap dynamics is deterministic. This leads
to the derivation of flow equations for the overlap. Again, the Q =3 model with p=2
patterns is studied in detail. Limit-cycle behaviour is shown to be possible for asym-
metric couplings. Finally, in section 5 the conclusions are presented.

2. The model

Consider a fully connected network with N neurons which can take values in a set
L={-1=35,<5,<...<Sg_; < Sp=+1} where the elements have mean 0. A state of the
system will be denoted by o =(o(1),...,c(N)). We want to store p patterns {£}'},
i=1,...,N, u=1,...,p, where &' are independent random variables with the same
uniform distribution as the neurons. We study the following Hamiltonian:

Lf=

N N
H(b)=-3 ¥ Jyo(o(H+b ¥ o(i)™ (1)
1 i=1
The synaptic couplings J; are given by

_ 1 e
li=qG L H AL @)
where A is an invertible symmetric p X p matrix and where C = {¢*) with {-) denoting
the average over the distribution of the patterns. For A =1, equation (2) reduces to
the Hebb rule. Note that we do allow self-coupling. The parameter b> 0 is introduced
as an additional degree of freedom in order to control the relative importance of states
which are low in absolute value. The local field h; in neuron i is defined as

W)= I o). )

Using standard techniques [17] the free energy at temperature T is calculated in
the limit N -0 as

C Q 1 2
F(T,m) =—2—m - Am-— T<<ln kzl exp[?(f- Ams, — bsk)]» (4)
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with £=(¢£',...,¢"). The variables m=(m",..., m") are introduced through the
saddle-point method. They satisfy the following fixed-point equation:

_L<< 2&1skexp[(l/T)(§-Amsk—bsi)]>> (5)
CN\” 2L, expl(1/T)(&- Ams.—bsi)] [

m=

3. Zero temperature dynamics

In this section the results of [18] are generalized to the multi-state model discussed in
section 2 with A strictly positive. \

Suppose the state of the network at time ¢ is o The state of neuron ¢ after the next
time step, i.e. at t+Af, is

Ua(i)=g(h(o)) (6)
where g is the input-output function:
5=-1 if x < b(s,+5;)
g(x)={s if B(se_y+5:) =X <b(sy +554) k=2,...,Q-1 (7
sg=+1 if b(sg-1tsp)=<x

We define the overlap between the instantaneous microscopic state of the system, o,
and pattern {&'}, i=1,..., N, as

1 N
mt=—- “o(i). 8
Ne 3, 60 ®
The neuron dynamics induces in a natural way a dynamics in the space of overlaps:

1 N .
Um =ﬁa§. &(Uea)(i) 9)

with & =(£&i,..., &). Using the fact that h(o) =&+ Am, we get by the law of large
numbers

Um==(£ (& Am)). (10)
In addition, the limit T -0 of the fixed-point equation (5) reads

m =208 Spusl £+ Am)) (11)
where

smax(g-Am)=mE.a£)( (E+ Ams — bs?). (12)

It is easy to show that
Smax(g'Am)=g(§'Am)- (]3)

Hence the variables m, appearing in (4) and (5) can be interpreted as the overlap with
the patterns. This means that the overlap (8) is the correct order parameter describing
the correlations between the state of the system and the patterns. We must be aware
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that (8) attains values up to m,,,, = {|£|}, which exceeds one if Q> 3, and that it does
not measure the quality of retrieval. A better quantity to measure the retrieval quality
of a network is the Hamming distance between the instantaneous microscopic state
and the patterns:

1 N
d* =10 3 (al) - €Y (14)
Here we observe that in a fixed point, where o(i) = g(&+ Am), we obtain
#=(g(£- Am) = &)%), (15)

So in the following we concentrate on the overlap m.
Next we show that the zero temperature limit of the free energy (4) is a Lyapunov
function for the overlap dynamics

E{m)=Ilim F(T, m) (16)
= Am = (€ Amg(£- Am))+b(g (£ Am)). (a7)

Consider a vector £ € 22", Because there are exactly Q7 vectors £ we can label the
components of { by the £s. We then define

G;={meR"|g(&- Am)=(;}. (18)
This gives a partition of the space of overlaps in disjoint convex regions.
If me G, and m'e G, then Um = Um'. Furthermore, if m € G; and Um < G; then
Um is a fixed point.
Define now for each ¢ the following function on the space of overlaps:

Q;(v)=§v- Av—Cv- Av;+b((§§)) (19)

with o, = Um for an arbitrary m € G;. It is clear that on G;, Q;(-) and E(-} agree.
Moreover, Q;(+) has its absolute minimum in v, because Q,(v)—Q;(v;) =
(C/2)(v—1v;) - A(v—1v;). Comparing Q;(v;) and E(v;) we get

Qu{vr) — E(v) =4({F — L)(§- Ao —b({i+ L)) (20)
where {" is such that v; e G;+. Using this and the definition of g(-} it follows that the

contribution of each term in the average {20) is non-negative. This proves that for a
given me G; and v; = Um

E(m)= Q,(¥;)= E(1;) (21}

which means that E(-) is indeed a Lyapunov function for the averlap dynamics (9).
Note that equality is obtained if and only if v; € G; which implies that v; is fixed.
We can now formulate an algorithm which visualizes the dynamics:
(1) Choose an initial overlap m in some region G, characterized by a vector { € ¢
such that {, = g(£- Am)
(2) Compute Um = v, = (1/ C){ELe)-
(3} If ;e Gy
then v, is a fixed point (the only one in G;!)
else
» There is no fixed point in G;.
o E(v;)<E(m).
» Repeat {1).
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Thus we can conclude that a region G; contains a fixed point if and only if
1 ,
veer: o Le-A8D) =t (22)

This result provides us with a methed for finding (in principle) all the fixed points of
the dynamics: all { that satisfy (22) define a region that contains a fixed point, namely

o= 8. (23)

Although there is a restriction on the { to be tested (£, ={_ f) in practice the algorithm
is only useful for small p since the number of possible ¢ is of the order Q2.
As an illustration we explicitly analyse the structure of the fixed pomts inthe Q=3

; adAl PR, et
mode! with A=1. In that case the saddle-point equation {5} can be writien

m“=3p_1§g(m“+f- i) (24)
with £=(&,..., 67L&, ..., ¢) and M, =(m',...,m"”", m**', ... m*). Since

2{-) now takes values in {—1, 0, +1}, we observe that every component has to be a
multiple of 1/3°”". Note thai for ithe Q =3 case the overiap satisfies [m”|< i. Ordering
the components of the overlap from high to low reduces the number of cases to be
examined to (37" +1)!/(37"' — p+1)!. This is much less than the number of cases in
general, i.e. 3°%77V2
For p=2, we then only have to consider the first octant of the (m’, m®) plane,
leading to the following results:
o Because of (24) all fixed points satisfy m'+ m?<3%,
» The state m = (0, 0} is always a fixed point.
o For 0 < b <} there exists one retrieval state {1, 0), one symmetric state 3,3 and
one asymmetric state (1, ).
o For i=< b <3 there exists one retrieval state (1, 0), two symmetric states (3, 3} and
(3, %) and one asymmetric state (3,3).
o For 3= b <1 there is one retrieval state (1, 0).
e For 1= b there is no other fixed point but (0, 0).
It is worth noting that the retrieval state appearing for 0 < b <1 is ground state only
fori<b <!, ascan be verified by explicitly computing the free energy (4). For general
Q > 3 retrieval states only appear in a restricted region for b, namely

Q =3 Q-1

1
<2b<Q >

(25}

4. Finite temperature dynamics

4.1. The flow equations

In order to find out how an arbitrary initial state of the system characterized by its
overlap m changes in time, we derive the flow equations for the overlap using techniques
similar to the two-state case [22, 23]. In contrast to the Potts model [20] we do not
need to introduce sublattices.
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We start from the symmetric learning rule (2). Suppose that the state of the network
at time ¢ is o with o(i) = s from some l€{1,..., Q}. The probability that, at ¢+dt,
the ith neuron changes its state to F s = S(t1+k)ymod @)+ 18 taken to be

wi{s,— Fjicsr) =E]j GXPI:lT(h,-(a')F:‘s, - b(Ffs,)z):I

o I (26)
Z;= ¥ exP[_(hi(o')Sk - bsi)].
k=1 T

These transitions satisfy detailed balance. At this point it is important to remark that
the limit T— 0 of the dynamics described by these equations (26} (denoted in the
following by T=0") is defined for continuous time, while the deterministic zero
temperature dynamics given by (6) is defined for discrete time. Consequently, the
solutions of the respective dynamical equations are not necessarily the same as we will
see explicitly in section 4.2.

We then consider the probability p(e, t) of observing the network in a state o at
time t. The following master equation is valid:

N

PR _ 5§ (w(Froli)» o(p(Fr*a, - wio(D» Fap(a, ). (@7)

at i=1 k=1

Defining the probability of finding the system at time ¢ in a state with overlap m by

P(m, t)=% p(o,1)6(m—m(o)) (28)

the master equation (27} transforms into
P N oQ

D Tpe0 T T wlol)> Flal)

x [a(m—m(a)+$§ia‘:(a)) —S(m—mw))] Q9
with

Af¥(g)=o(i)— Fra(i) ) (30)
where we have used that

m(0) - m(Ffo) =~ =£aK(0). (31)

Defining the average at time ¢ of a test function ®(-) as '
d,= J. dm P(m, :)®(m) (32)

we then arrive at

_d@ _J‘dmap(m, 1)

FTA 5 2lm) (33)

=3 [ amsm-monp(o.0 T § o) Flo)

o i=1 k=1

x [@(m(a)—;v%mf(a)) —«b(m(a))]‘ (34)
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Expanding the function ® in powers of 1/ N, doing a partial integration and comparing
with (33), we get

Emb_y. [P(m, r)( m —é—((f(s»))] +O(p/N) (35)

where () denotes a thermal average, i.e.

2 f(s) expl(1/ T) &+ Ams, — bsi)] 36)
S, expl(1/ THE: Ams, —bsi)}

Taking as initial probability distribution

(fGs)=

P{m, 0)=8(m—m,) (37)
the solution of (35) at time ¢ reads .

P(m, )=8(m-m(t})) (38)
where the flow m(t) satisfies

dm(t)

o =mts <<§< M (39)

with initial condition m(0)=m,. So, comparing (5) and (39) we conclude that
thermodynamical and dynamical stability are equivalent for invertible symmetric A.
Furthermore, if A is strictly positive it follows that the free energy {4) is a Lyapunov
function: .

dF(T,m(1)) 2 dm*()6F(T,m) 1 dm(t)'Adm(t)
dt 2 de am*  C dt dr

<0, (40)

]

In order to study the stability properties of the state m one has to look at the eigenvalues
of the matrix

Sunm) = C8,., ~Z(E*(A) (I ~<() (41)

where {s%) and (s} are given by (36).

4.2, Stability properties for Q=3 and p=2

We use the flow equations (39) for the overlap to illustrate the complex behaviour of
a multi-state model. We restrict ourselves to the most simple case: the Q =3 model
with p=2 patterns and with synaptic matrix A taken to be the unit matrix. In this
discussion it is useful to define the following function:

1+ ¥ cosh(x/T)

3Ty +cosh(x/ )T =2exp(b/T). (42)

g(x)=

We recall that it is sufficient to discuss the situation in the first octant since interchanging
components or changing the sign of one of the components has no influence on the
existence and nature of the fixed points.
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4.2.1. The zero solution. The zero solution m=(0,0) is always a fixed point. The
stability of this point is determined by the eigenvalue A of the stability matrix (41):

A=—1+3g(0). (43)

As we can see in figure 1 this splits the {b, T} plane in two regions separated by a line
T,: the zero state is stable in region I and unstable in region 11, We observe that for
b>0.4631 the zero solution is stable at any temperature.

4.2.2. Retrieval states. The solutions of the fixed-point equation (5) of the form (m, 0)
are given by

sinh{m/T)

cosn(m T “

Studying the eigenvalues A; and A, of the corresponding stability matrix,
Ay=—1+3g{m) A=A +g(0)—glm) (45)

we arrive at the situation depicted in figure 2.

At T=0" we find the stable retrieval state m =1 already mentioned in section 3.
Furthermore, a repelling state m = b occurs. Depending on b the behaviour of these
states for increasing temperature is different.

For 0< b < 0.4621 the repelling respectively the retrieval state goes continuously
to the zero state at T, respectively Ty, In the region enclosed by T}, the retrieval state
becomes unstable due to the existence of a stable asymmetric state.

In the region 0.4621<b <0.4631 there is re-entrant behaviour (see figure 5}
the repelling state first goes continuously to the zero state which becomes unstable
at the lower part of T,. Then it continuously reappears at the higher part of T,
* where the zero state regains its stability. Finally it disappears discontinuously together
with the retrieval state at T,,.

For 0.4631 < b < 1 both states coalesce at Ty, where they disappear, which is again
reminiscent of a first order phase transition.

For b =1 no solutions of the form (m, 0), m # 0 exist.

‘7 | L L 1

.G T T I T
0.0 0.2 04 0.6 0.8 1.0
b

Figure 1. The temperature Ty as a function of the parameter b for the Q =3, p =2 network.
Region I: stable zero state; Region II: unstable zero state.
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-7 ] 1 1 1

T.=T,

0.0 0.2 04 0.8 0.8 1.0

Figure 2. The temperatures 77, (dashed line), T, and Ty, as a function of the parameter
b for the Q =3, p=2 network. For 0 < b <0.4621, T, = Ty;. Within the region enclosed by
the dashed curve T, no stable retrieval state is possible.

4.2.3. The symmetric states. The solutions of the fixed-point equation (5) of the form
{m, m) are determined from

_1( sinh{m/T) + sinh(2m/T) ) (46)
3\y+cosh(m/T) y+cosh(2m/T)/’
Studying the eigenvalues of the stability matrix,

A=—1+g(m}+2g(2m) Ay=—1+g(m)+2g(0) (47)

we find the situation shown in figure 3.

At T = 0" there exist, depending on b, stable symmetric states as discussed in section
3. Moreover, for 0< b <3 a symmetric saddle-point occurs at m =b/2 and for §< b <%
a repelling symmetric point occurs at m= b, Depending on b and with increasing
temperature the following behaviour is observed.

7 L 1 1 1 L L

Figure 3. The temperatures T} (dashed line), Toand T, as a function of the parameter b
for the Q@ =3, p=2 network. For 0< b<04621, T,=T,.
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For 0< b <3 the lowest symmetric state goes continuously to the zero solution at
T = T,. The highest symmetric state is stable from T=0to T=T!. There it becomes
a saddle-point going continucusly to the zero solution at T=T, = T,,.

For }< b<? there are (at low temperatures) four symmetric states. Because the
very existence of four symmetric states does not influence the retrieval properties of
the network we only remark that at some still rather low temperature two of them
disappear together.

e In the region ;< b <0.4621 the behaviour is then similar as for b <3}, once two

of the four symmetric solutions have disappeared.

* For 0.4621 < b <0.4631, however, there are again re-entrance phenomena (see
figure 5). At the lower part of T, the highest symmetric state turns into a
saddle-point and at the lower part of T, the lowest one continuously disappears
in the zero solution making the latter unstable. At the higher part of T,, however,
the lowest state reappears. At the higher part of T the highest symmetric state
regains its stability. Finally, at T, the symmetric states coalesce and disappear.

e For 0.4631 < b <0.4667 only the re-entrance for T remains.

* In the region 0.4667 < b <2 the last two symmetric states coalesce at T, where
they disappear. However, for 0.5024 <b<0.5114 there is a re-entrance
phenomenon. This is related to the fact that it is not always the same symmetric
states that disappear first.

For b>>3 there are no symmetric states.

4.2.4. The asymmetric states. In order to find the asymmetric states one has to solve
the fixed-point equations (5) in general. The most important aspects of the behaviour
of these asymmetric solutions are depicted in figure 4.

.4_ 1 1 1 1

Figure 4. The temperatures T4, (dashed line) and T, as a function of the parameter b for
the @ =3, p=2 network. For 0< b <0.1547, T,,=T4,. For 0<h<04621, T3, =T, .

In the region 0<b <} there exists at T=0" a stable state (1,3), a repelling state
(1,b) and a saddle-point ((+3b,5—3b). With increasing T the saddle-point goes
continuously to the highest symmetric state at T and turns this state into a saddle-point.
For 0< b <0.1547 the repelling state goes continuously to the retrieval state at Ty,
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and turns the latter into a saddle-point. However, for 0.1547 < b <} the repelling and
attracting states coalesce at T,, where they disappear.

In the region ;< b <3 the situation is more complicated. At T=0" there is an
attracting state (3, 1). Furthermore, for 1< b <% there are at T=0" four saddle-points
((1+8)/2,(1 —b)/2), (b,3), ¢, b) and (+1b,2—1b), and one repelling point (26, b).
However, for 5< b <2 only the first three saddle- -points solve (5).

In figure 4 we have indicated all information about the asymmetric states that is
necessary to evaluate the retrieval qualities of the network:

¢ The attracting state mentioned above disappears together with one of the saddle-

points at T,,. A complex re-entrance phenomenon can be observed for 0.4883 <
b < 0.5000.

¢ There exists an asymmetric saddle-point up to T%4,. The leftmost part of T4,

coincides with T¢. At this line the asymmetric saddle-point and the highest

ala #3x AAl + Hly
a.y'uuut..uu.f state coaiesce Lu1111115 the latterinto a Sﬁuuxe-}'}ﬁii‘u Cuﬁsequeﬂu_y, HH]

the region 0.4621 < b<0.4667 a re-entrance phenomenon corresponding to the
one for T? is observed (see figure 5). At the rightmost part of T“_ the asymmetric
saddle-point and the repeliing solution to (44) coalesce turning the latter into a
saddle-point.

Figure 5. Re-entrant behaviour for 0.4621 < b < 0.4667. The lines Ty, Ty, T,, T and T,
are defined as before.

Finally, in the region §<b <1 only one asymmetric state exists, namely the one
corresponding to ((1+b)/2,(1-b)/2) at T=0". It disappears continuously in the
lowest retrieval state at T, turning the latter into a saddle-point.

It would be interesting to see if the features presented above survive for extensive
loading a, which has, of course, to be studied with different methods. For the Hopfield
model [17] for example (where it should be remarked that no parameter b is present)
one knows that for finite a the system behaves in the retrieval regime very much as if
it were at a finite temperature proportional to («)"% Consequently the overlap will
not be unity. However this overlap does not go continuously to zero with increasing
temperature (i.e, a first-order transition occurs). Furthermore, for that model the
spin-glass states appearing for finite @ can be considered as the collective remnant of
the finite-p symmetric mixture states.
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4.3, Limit-cycle behaviour

Extending the learning rule (2) to asymmetric matrices A, the Hamiltonian formalism
is no longer valid. However, one can easily show that the derivation of the dynamical
equation (39) still goes through. In this case limit-cycle behaviour is possible. This
phenomenon has already been observed for the Hopfield model [19] and the Potts
model [20, 21]. We restrict ourselves here to an explicit example: @Q=3,p=2,5=03
and the matrix A given by A, = Ax.=1, A;;=—A,;,=0.25.

At T=0" there are four attracting and four repelling asymmetric points. The zero
solution is stable.

When the temperature increases (see figure 6(a) with T=0.04) there exist four
repelling asymmetric points and an attracting limit-cycle. The zero solution is stable.

1.0 L (BI') ) 1.0 1 u?) 1
i __,.—-—*'-'__._P_ ! __._a-f""—/'—_
0.5+ - 0.5 o
g 001 - % 0.0 ' .
~051 - ~05+ -
___'__,__,__.—-—4"—'_ ______,_..-1—-"—'_
'—1-0 T 1 T -1-0 1] T T
-1.0 ~0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
m’ m!
10 - A \

05+ L
5 0.0 L

=-0.54 {

Figure 6. The flow lines in the (m', m?) plane for
10 y T 7 the Q =3, p =2 network with asymmaetric couplings.

-1.0 -0.5 0. 1.0
oy {a) T=004; (b) T=5; (¢) T=L.

=3
o
tn

A further increase of the temperature (see figure 6(b) with T =13) results in the
existence of one attracting and one repelling limit-cycle. The zero solution is stable.

The repelling limit-cycle contracts to zero and the zero solution becomes unstable
when raising the temperature still further. The attracting limit-cycle remains (see figure
6(c) with T=3}).

Finally, the attracting limit-cycle contracts to zero at T = 0.1063 and the zero state
becomes attracting. From here onwards this is the only remaining fixed point.

It is interesting to note that limit-cycle behaviour was also observed for the Q =3,
p =3 system with the same values for the parameters b and T

%. Concluding remarks

In this paper we have studied the dynamics of Q-Ising spin-glass neural networks with
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a finite number of patterns at arbitrary temperature. In particular the existence and
stability properties of the retrieval states and the spurious symmetric and asymmetric
states were discussed. In this way we have not only beiter understood the retrieval
properties of these attractor neural networks but we also gained some insight into the
non-trivial dynamics of Q-Ising spins.

Allowing self-coupling between the neurons, we were able to show that for sym-
metric couplings satisfying a certain positivity condition (i.e. A strictly positive), there
exists a Lyapunov function for the dynamics in the space of overlap vectors. In the
zero-temperature case this could be used to construct an algorithm that allows, in
principle, all the fixed points to be found. For practical reasons the number of neuron
states and patterns should be small. Even in the simple example Q=3, p=2, A=1
there appeared, besides the retrieval states, symmetric and/or asymmetric states
depending on the relative importance of the low {in absolute value) neuron states.

For finite t.,mpuature we have derived the flow cq'l.iauuua for the GVCI’IE‘:p for
couplings which need not be symmetric. We have then noticed that the thermodynamical
and dynamical stability are equivalent for symmetric couplings. Studying the stability
properties of the Q =3, p=2, A=1 model in detail gave us already a good illustration
of the complex behaviour of these types of network. The (retrieval) performance of
the network is strongly dependent upon the temperature and the parameter b, measuring
the importance of the low neuron states. In fact for 0.4631 < b <1 the retrieval state
is never the only attracting point of the dynamics. So the size of the basin of attraction
is diminished by the existence of a repelling solution te the fixed-point equation for
the overlap {cf (5)) and by the existence of an asymmetric saddle-point for temperatures
up to Tg,. For 0<b<0.4631, however, situations do occur at sufficiently high tem-
peratures where only the retrieval state is an attractor. Its basin of attraction is then,
of course, maximal. We end with the remark that all states show re-entrant behaviour
in the region 0.4621 < b < 0.4631.
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